Posts Tagged ‘University of Queensland’

Baby, just look at me now – study cracks the genetic code for complex traits in cattle

professor Hayes

Professor Ben Hayes.

 

A global study involving 58,000 cattle has pinpointed the genes that influence the complex genetic trait of height in cattle, the University of Queensland announced today.

The study opens the door for researchers to use the same approach to map high-value traits including those important for beef and milk production.

The University of Queensland’s Professor Ben Hayes, who heads the global 1000 Bull Genomes Consortium of 57 researchers from 30 institutes, said it had previously been a major challenge to identify variants in the genome affecting complex traits, due to variations within multiple genes and to behavioural and environmental factors.

“To overcome this issue, the consortium pooled large genomic datasets and phenotypes collected from 58,000 cattle around the world to gain the clearest picture so far of their genetics,” Professor Hayes said.

“We needed access to vast resources of data in order to demonstrate that the genes affecting a complex trait like height can be accurately identified.

“By applying the same collaborative big data approach, it may now possible to identify genes associated with high-value complex traits that are really important to the industry, such as beef and milk production, feed efficiency and reduced methane emissions.”

The 1000 Bull Genomes Consortium’s findings on height were confirmed by analysing the genetic material of miniature cattle and the DNA sequenced from a 6500-year-old wild auroch bone.

“Aurochs are an extinct species of large wild ox – which were domesticated by ancient humans about 10,000 years ago and bred to be shorter – and are the ancestor to all cattle breeds,” Professor Hayes said.

“From analysing the DNA of this animal, we could predict its height, and then verify our prediction with the fossil records of auroch skeletons.”

“On the other hand, the miniature cattle were predicted to be quite small based on their DNA and the genes we pinpointed in the study, validating our discoveries.”

When the team applied its findings to the genetic datasets collected for humans and dogs, they were surprised to find that there was a high degree of overlap.

“The same genes influencing height in cattle also influence the trait in other mammalian species,” Professor Hayes said.

“This is something that has never been demonstrated before.

“It opens up the possibility for researchers working in cattle and human genomics to share data on traits such as temperament and body fatness.”

The research is published in  Nature Genetics.

Advertisements

Aust researchers’ wheat genes discovery has potential to boost food security

The discovery of genes that determine the yield of flour from wheat could increase milling yield, boosting food security and producing a healthier flour.

University of Queensland researchers believe the discovery could increase the amount of flour produced from wheat by as much as 10 per cent. .

Wheat — the leading temperate climate crop — provides 20 per cent of the total calories and proteins consumed worldwide. Wheat grain is milled, or crushed, to make flour for bread and other food products.

UQ Queensland Alliance for Agriculture and Food Innovation Director Professor Robert Henry said his research team had pinpointed the genes that control a cell protein which acts like a glue, holding the wheat grain’s endosperm, wheat germ and bran layers together.

“Wheats that produce less of this glue-like protein come apart more easily in the milling process,” he said.

“This increases the efficiency of processing and improves the nutritional profile of the flour as more of the outer parts of the endosperm — rich in vitamins and minerals — are incorporated into the flour.

“This applies not only to white flour but also to wholemeal flour.

“Potentially we can take high-yielding field wheats that have not traditionally been considered suitable for milling, and turn them into milling wheats.

“This will improve on-farm production and reduce post-harvest wastage and the amount of resources used to grow the wheat.

“And, by getting a few per cent more flour from the 700 million tonnes of wheat produced globally each year, we will be producing significantly more food from the same amount of wheat,” he said.

Australian wheat traditionally attracts a high price in the market because it has a reputation of giving high flour yields.

“We haven’t been able to genetically select for this trait at early stages of breeding before,” Professor Henry said.

“The effect of this cell adhesion protein explains the difference between wheats that give us 70 per cent flour when we mill it, to 80 per cent, which is quite a big difference.”

Professor Henry said this knowledge could be employed immediately in wheat breeding programs.

“It means that we can produce premium wheats more efficiently and push the yields of quality premium wheats up.”

The team is now looking at DNA testing to breed wheats based on this new molecular discovery. Their findings are published in Scientific Reports.