Chance discovery about food crops and carbon capture holds lesson for NZ science funders

University of Guelph researchers believe an almost entirely accidental discovery could transform food and biofuel production and increase carbon capture on farmland.

By tweaking a plant’s genetic profile, the researchers doubled the plant’s growth and increased seed production by more than 400 per cent.

The findings were published in the March 2016 issue of Plant Biotechnology Journal.

The team studied Arabidopsis, a small flowering plant often used in lab studies because of its ease of use and its similarity to some common farm crops. They found that inserting a particular corn enzyme caused the plant’s growth rate to skyrocket.

“Even if the effects in a field-grown crop were less, such as only a tenth of what we’ve seen in the lab, that would still represent an increase in yield of 40 to 50 per cent, compared with the average one to two per cent a year that most breeding programs deliver,” said Prof. Michael Emes, Department of Molecular and Cellular Biology (MCB).

He said the team’s finding could boost yields of important oilseed crops such as canola and soybean, as well as crops such as camelina, increasingly grown for biofuels.

Larger plants would capture more atmospheric carbon dioxide without increasing the amount of farmland, said Emes.

“Farmers and consumers would benefit significantly in terms of food production, green energy and the environment. The ramifications are enormous.”

The finding came almost by chance.

Studying the enzyme’s effect on starch, the researchers noticed that their genetically engineered plants looked different and much larger in photos taken by lead author Fushan Liu, a former post-doctoral MCB researcher.

“That’s when we realized that we were looking at something potentially much more important,” said Ian Tetlow, an MCB professor and study co-author.

Although genetic engineering led to more flowers and pods containing seeds, it left the seed composition unchanged.

“The seeds are where we would get the oil from, and consistent composition is important so that the function and use of the oil isn’t changed,” said Tetlow.

The researchers plan to test canola and other crops. Field tests and analysis with industry and government will likely take several years.

Emes said the discovery could have enormous implications for agriculture, carbon capture, food production, animal feedstocks and biodiesel.

The work was started to test some ideas in basic science,  he said, which “just goes to show that you never know where that science will take you.”

This quote should be framed and mounted on the wall of the office inhabited by New Zealand’s Minister for Science and Innovation, for him to reflect on when making funding decisions.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: