Expression of genetic growth in sheep underpinned by feed allowance

Lincoln University has announced research by a group of scientists is helping to unravel a long-standing puzzle about sheep and weight gain.

The scientists are Dr Paul (Long) Cheng, Chris Logan, Professor Grant Edwards and Dr Huitong Zhou, from Lincoln’s Faculty of Agriculture and Life Sciences.

Dr Cheng, the lead researcher, said traditional wisdom among farmers is that sheep with the genetic potential to grow faster will be more efficient at converting their feed into weight gain (known as higher feed conversion efficiency) than sheep without this genetic potential.

He said:

“Work in this field has, however, been restricted by the inability to make accurate measurements of the intake of individual animals.”

After analysing the results of measurements taken during the trial, Dr Cheng found the expectation that sheep with the potential to grow faster would be more efficient was true only when the sheep were well feed (170% of maintenance metabolisable energy requirement, in this case).

For this trial, two groups of 14 Coopworth sheep from Ashley Dene, a Lincoln University dry land farm were selected.

Dr Cheng chose the groups based on Sheep Improvement Limited data taken from farm records – one group from a non-improved strain from the 1990s with low genetic growth potential (with an average of 124 in the SIL Dual Purpose Overall Index for growth), and the
other from an improved strain with high genetic growth potential (with an average of 1711 in the SIL Dual Purpose Overall Index for growth).

Dr Cheng further divided each group into two feed allowance groups (170 % and 110 % of maintenance metabolisable energy requirements) balanced for live weight and age for the five-week trial.

All sheep were fed on commercially purchased lucerne pellets. Regular measurements were taken throughout the trial, including individual sheep live weight and daily intake.

Dr Cheng found that at the low feed allowance level (110% of maintenance metabolisable energy requirement), the sheep with low genetic growth potential actually performed better compared with the high genetic growth potential sheep, with 49% and 71% higher average daily gain and feed conversion efficiency, respectively.

“This may be due to the higher maintenance requirement of high genetic growth potential sheep with larger organs, as previously found in high producing dairy cows,” said Dr Cheng.

In addition, Dr Cheng used this dataset to validate his newly developed stable nitrogen isotope technique to indicate feed conversion efficiency. He took weekly blood samples from each sheep and also sampled the mid-side wool of each sheep at the end of the trial. It came out with a very promising relationship, that both stable nitrogen isotope concentration in blood and wool provided a good indication of the feed conversion efficiency of the individual sheep.

Dr Cheng believes this may be developed in the future as a cost-effective way of assessing larger numbers of sheep.

“It has been very satisfying to be able to expand on the research I did for my PhD studies and apply it to another common farming system,” said Dr Cheng

Dr Cheng will continue to use this newly developed isotope technique to further his postdoctoral research in the use of plantain and chicory for heifer production, which is funded by AGMARDT, New Zealand.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: